Studying the Pipeline Crack Growth in the Analysis of Nuclear Power Plant Internal Flooding and Estimating the Maximum Possible Leak Rate

  • Олег [Oleg] Владимирович [V.] Горюнов [Goryunov]
  • Александр [Aleksandr] Витальевич [V.] Совгиря [Sovgirya]
  • Надежда [Nadezhda] Юрьевна [Yu.] Шурыгина [Sovgirya]
Keywords: flooding, safety analysis, nuclear power plant, nuclear safety

Abstract

Regulations concerned with the deterministic analysis of the impact of flooding on the NPP safety stipulate the need to evaluate the degradation degree of defense-in-depth (DiD) levels. The results of this analysis serve as input data for the probabilistic safety assessment (PSA) and selection of technical solutions. To estimate the flooding zone and the list of dependent failures, it is necessary to postulate the size of a pipeline or tank leak. The leak flowrate has an essential effect on the analysis result: the flooded zone size, the list of failed equipment components, and the characteristics of protective measures. The currently effective Federal Codes and Regulations of the Russian Federation do not stipulate procedures for estimating the consequences of flooding in the framework of a deterministic approach, and the use of foreign calculation procedures (ANSI / ANS-58-2, NUREG / CR-3464) yields ambiguous results. The conservatism level of foreign approaches is evaluated taking into account the laws of fracture mechanics. To this end, the maximum allowable sizes of defects in pipelines of various standard sizes that do not lead to a guillotine rupture and limit the maximum flowrate values are estimated. The results of the comparative analysis and calculations will be applied as part of the safety justification of Russian and foreign NPP projects.

Information about authors

Олег [Oleg] Владимирович [V.] Горюнов [Goryunov]

Leading Engineer, JSC «Atomenergoproekt», e-mail: ovgoriunov@mail.ru

Александр [Aleksandr] Витальевич [V.] Совгиря [Sovgirya]

Engineer of the 2nd Category, JSC «Atomenergoproekt»

Надежда [Nadezhda] Юрьевна [Yu.] Шурыгина [Sovgirya]

Leading Engineer, JSC «Atomenergoproekt»

References

1. Горюнов О.В. и др. Методология анализа внутренних воздействий на безопасность АЭС // Электрические станции. 2021. № 5. С. 9—16
2. IAEA Safety Standards Series No. SSG-64. Protection against Internal Hazards in the Design of Nuclear Power Plants.
3. ANS-58.2—1988. Design Basis for Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture.
4. Paris P.C., Tada H. The Application of Fracture Proof Design Methods Using Tearing Instability Theory to Nuclear Piping Postulating Circumferential Through Wall Cracks. Washington: Division of Engineering, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1987.
5. ГОСТ Р 58328—2018. Трубопроводы атомных станций. Концепция «течь перед разрушением».
6. НП-068—05. Трубопроводная арматура для атомных станций. Общие технические требования.
7. Карзов Г.П., Марголин Б.3., Швецова В.А. Физико-механическое моделирование процессов разрушения. СПб.: Политехника, 1993.
8. Басов К.А. ANSYS для конструкторов. М.: ДМК Пресс, 2009.
---
Для цитирования: Горюнов О.В., Совгиря А.В., Шурыгина Н.Ю. Исследование развития трещины трубопровода в анализе внутреннего затопления атомной станции и оценка максимально возможного расхода течи // Вестник МЭИ. 2023. № 4. С. 122—129. DOI: 10.24160/1993-6982-2023-4-122-129
#
1. Goryunov O.V. i dr. Metodologiya Analiza Vnutrennikh Vozdeystviy na Bezopasnost' AES. Elektricheskie Stantsii. 2021;5:9—16 (in Russian).
2. IAEA Safety Standards Series No. SSG-64. Protection against Internal Hazards in the Design of Nuclear Power Plants.
3. ANS-58.2—1988. Design Basis for Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture.
4. Paris P.C., Tada H. The Application of Fracture Proof Design Methods Using Tearing Instability Theory to Nuclear Piping Postulating Circumferential Through Wall Cracks. Washington: Division of Engineering, Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, 1987.
5. GOST R 58328—2018. Truboprovody Atomnykh Stantsiy. Kontseptsiya «Tech' Pered Razrusheniem».(in Russian).
6. NP-068—05. Truboprovodnaya Armatura dlya Atomnykh Stantsiy. Obshchie Tekhnicheskie Trebovaniya. (in Russian).
7. Karzov G.P., Margolin B.3., SHvetsova V.A. Fiziko-mekhanicheskoe Modelirovanie Protsessov Razrusheniya. SPb.: Politekhnika, 1993. (in Russian).
8. Basov K.A. ANSYS dlya Konstruktorov. M.: DMK Press, 2009. (in Russian)
---
For citation: Goryunov O.V., Sovgirya A.V., Shurygina N.Yu. Studying the Pipeline Crack Growth in the Analysis of Nuclear Power Plant Internal Flooding and Estimating the Maximum Possible Leak Rate. Bulletin of MPEI. 2023;4:122—129. (in Russian). DOI: 10.24160/1993-6982-2023-4-122-129
Published
2023-04-12
Section
Nuclear Power Plants, Fuel Cycle, Radiation Safety (Technical Sciences) (2.4.9)